TOWARDS A UNIVERSAL INFLUENZA VIRUS VACCINE

Peter Palese

Icahn School of Medicine at Mount Sinai New York

OPTIONS IX 8-26-16

ISIRV - Options IX for the Control of Influenza

Peter Palese, PhD Professor and Chair Department of Microbiology Icahn School of Medicine, New York

Mount Sinai has submitted patent applications for a universal influenza virus vaccine

Work has been supported by the NIH, The Bill & Melinda Gates Foundation, GSK

My presentation does not include discussion of off-label or investigational use.

Surface glycoprotein diversity of different viruses

Influenza virus HA diversity

Similar variation for influenza, HIV and HCV_{0.05}

F. Krammer

EIGHTEEN SUBTYPES OF INFLUENZA A VIRUS HEMAGGLUTININS

Influenza viruses circulating in the human population

AVIAN INFLUENZA VIRUSES INFECTING HUMANS

H5N6	China	2016
H7N9	China	2015, 2014, 2013
H10N8	China	2013
H6N1	Taiwan	2013
H10N7	Australia, Egypt	2010,2004
H7N3	Mexico,UK,Canada,Italy 201	2,2006,04,03
H7N2	UK,USA	2007,2003
H9N2	Hong Kong	1999
H5N1	Asia, Europe, Africa, Hong Kong	2015-2003 , 1997
H7N7	Netherlands,UK,USA,Austr.,USA	2003,96,80,77,59

INFLUENZA VIRUS VACCINES

INACTIVATED LIFE ATTENUATED RECOMBINANT

INFLUENZA VIRUS VACCINE STRAINS 2016-2017

A/California/7/2009 (H1N1)pdm09 A/Hong Kong/4801/2014 (H3N2)

B/Phuket/3073/2013 B/Brisbane/60/2008

- INFLUENZA VIRUS VACCINES ARE UNIQUE.
- THEY HAVE TO BE GIVEN **ANNUALLY, BECAUSE NOVEL** VACCINE FORMULATIONS HAVE TO BE PREPARED REFLECTING THE RAPID **ANTIGENIC CHANGE OF THE VIRUS**.

Antigenic diversity: analysis of the flexible influenza A virus and rigid measles virus glycoproteins

Nicholas Heaton, PhD Ben Fulton

Palese Lab Icahn School of Medicine at Mount Sinai

INSERTION MUTATIONS ARE TOLERATED IN THE HEAD OF THE HEMAGGLUTININ After

The measles virus glycoproteins (and the polymerase) are resistant to insertions

TOLERANCE OF THE INFLUENZA A VIRUS AND OF MEASLES VIRUS GENOMES

HOW CAN WE DO BETTER?

UNIVERSAL INFLUENZA VIRUS VACCINES

Vision for a human universal influenza virus vaccine

pre-existing immunity against e.g. H1

boost with cH5/1 construct

boost with cH6/1 construct

FLORIAN KRAMMER ADOLFO GARCÍA-SASTRE PETER PALESE

APPROACHES

- ADJUVANTS
- MVA-VECTORED
- M2e-BASED
- EPITOPES/PEPTIDES
- NEURAMINIDASE
- COBRA (computationally optimized broadly reactive antigens)
- STALK ONLY, HEADLESS HEMAGGLUTININ
- CHIMERIC HEMAGGLUTININ

Induction of protective levels of stalk-reactive antibodies using chimeric HA constructs in mice

Induction of protective levels of stalk-reactive antibodies using chimeric HA constructs in mice

Induction of protective levels of stalk-reactive antibodies using chimeric HA constructs in mice

matched vaccine (pos. contr.)

Induction of protective levels of stalk-reactive antibodies using chimeric HA constructs in mice

Vaccination with cHA constructs protects from pH1N1 (A/Netherlands/602/09) challenge

Similar results for A/PR/8/34 H1N1 and A/FM/1/47 challenges

Krammer et al. JVI, 87, 6542,2013

cHA constructs protect mice from heterosubtypic challenge

- positive control (matched inactivated)
- CH9/1 DNA + H1 protein/cH6/1 protein + cH5/1 protein/H1
- protein cH9/1 DNA + BSA +BSA

cH5/1 (H5 challenge) or cH6/1 (H6 challenge) protein was replaced by full length H1 protein to exclude head-based protection

cHA constructs protect ferrets from pH1N1 challenge

Krammer et al., JVI Jan. 8, 2014

Protection is antibody mediated

ELISA reactivity to Cal09 Passive transfer of serum (pH1N1) protein protects from viral challenge

Targeting group 2 HA viruses

Protection against group 2 HA expressing viruses in the mouse model

cH4/3 DNA	cH5/3 protein	cH7/3 protein	Phil/82 (H3N2)
PRIME	BOOST	BOOST	X/31 (H3N2) 1968 Rhea (H7N1)

<u>Control groups:</u> cH4/3 DNA + BSA + BSA naïve (neg. contr.) matched vaccine (pos. contr.)

CHALLENGE

Margine et al., JVI, 87,10435, 2013

Group 2 cHA vaccine protects against challenge with novel H7N9*virus

*cH7/3 protein was replaced by full length H3 protein for the H7N1 challenge group

Krammer et al. JVI,88, 2340, 2014

WHAT IS THE MECHANISM BY WHICH THESE BROADLY PROTECTIVE STALK-SPECIFIC ANTIBODIES MEDIATE THEIR ANTIVIRAL ACTIVITY?

medicine Broadly neutralizing hemagglutinin stalk–specific antibodies require FcγR interactions for protection against influenza virus *in vivo*

Broadly neutralizing hemagglutinin stalk-specific antibodies require FcγR interactions for protection against influenza virus *in vivo*

Antibody-dependent Cell-mediated Cytotoxicity (ADCC) can be induced by stalkspecific, but not head-specific antibodies.

DiLillo et al. Nature Medicine 2014

Antibody-Dependent Cell-Mediated Cytotoxicity (ADCC)

Can we elucidate the role epitope location plays in the induction of ADCC by broadly cross-reactive hemagglutinin antibodies?

Yes, by introducing FLAG epitopes into different locations in the viral hemagglutinin

Paul Leon, Wenqian He, Caitlin Mullarkey, Mark Bailey, Matt Miller, Florian Krammer, Gene Tan

A stalk-based FLAG epitope can induce FcyR-mediated effector function

Why do antibodies targeting the hemagglutinin head domain lack the ability to optimally induce ADCC activity?

Disruption of sialic acid engagement

• Blocking with Head-specific F(ab)₂

• Blocking with 6' Sialyllactose

• Mutating Y108F in Receptor Binding Site

Head-specific F(ab)₂ prevents ADCC induction of stalk-specific 6F12 mAb

Disruption of sialic acid engagement

• Blocking with Head-specific F(ab)₂

• Blocking with 6'-sialyllactose

• Mutating Y108F in Receptor Binding Site

10 mM of 6'-sialyllactose decreases ADCC induction of stalk-specific antibodies

Disruption of sialic acid engagement

• Blocking with Head-specific F(ab)₂

• Blocking with 6' Sialyllactose

• Mutating Y108F in Receptor Binding Site

Y108F mutation lowers RLU values when compared to WT Cal09

Y108F plasmid was generated and provided by Madhu

Two-contacts model for optimal induction of ADCC by influenza virusspecific mAbs

Property of the US Government cH5/1N1 GMOs contained inside

A/California/04/2009-(cH5/1N1)-PR8-IDCDC-RG37 Storage Conditions: 2-8°C Monovalent Pooled Harvest

3-1

Contract Nbr.: HHSO100201200011I Order Nbr.: HHSO10033005T Bottle 1 of 1

DOM: 29/08/2013

Property of the US Government

1405 000

cH5/1N1 GMOs contained inside Bottie 1 of 1 DOM: 29/08/2013 Bo Storage Conditions: 2-8°C Monovalent Pooled Harvest

bioCSL

MPH		29/08/14
Date of MPH Pre	29/08/14 IVV (Split Vinon	
Product:		00011494
Lot No:		AMethan
Strain:		VI-1593 MI
Seed Lot:		VI-1593 Proc.Stage: MI
Operators:	Pmu HU	
Bottle Tare:	5078	-9 29/08/15
Expiry:		

Start Frish biai Mar Mir Mir

ARHI

MPH Date of Product Lot No: Strain:

bioCSL

5279 C

Property of the US

Government cH8/1N1 GMOs contained inside

tract Nbr.: HHSO1002012000

ON TEST

cH8/1N1 GMOs contained inside

Contract Nbr.: HHSO1002012000111 Order Nbr.: HHSO10033005T Strain: A/mallard/Sweden/24/2002-California/04/2009-(cH8/1N1)-PR8-IDCDC-RG38A Seedlot: VI-1592 Bottle 1 of 1 DOM: 28/08/2013 Storage Conditions: 2-8°C Monovalent Pooled Harvest

SUMMARY

Towards a universal influenza virus vaccine by reducing the immunodominance of the hemagglutinin head and thereby increasing the immunogenicity of the hemagglutinin stalk and of the neuraminidase

Vision for a human universal influenza virus vaccine

FLORIAN KRAMMER ADOLFO GARCÍA-SASTRE PETER PALESE

SUMMARY (cont.)

MECHANISM OF ADCC INDUCTION (TWO-CONTACTS MODEL)

- The location of a FLAG-Tag epitope plays a critical role in determining the level of Antibody-Dependent Cell-Mediated Cytotoxicity (ADCC) induction
- The ability of the hemagglutinin to bind to effector cells via its sialic acid receptor is required for optimal ADCC induction
- By blocking/mutating the sialic acid receptor binding site with F(ab)₂, 6'-sialyllactose or a Y108F mutation, ADCC induction can be lowered substantially

ACKNOWLEDGEMENTS

FLORIAN KRAMMERJEFF RAVETCH RUADOLFO GARCÍA-SASTREP. WILSON UCSRIRAM SUBRAMANIAM NIH

TAIA WANGNATALIE PICAMATTHEW MILLERJOHN STEELDIRK EGGINKIRINA MARGINERANDY ALBRECHTANICE LOWENGENE TANTEDDY WOHLBOLD CAITLIN MULLARKEYNICK HEATONRONG HAIVICTOR LEYVA-GRADORAFFAEL NACHBAGAUERPAUL LEONCHRIS SEIBERTCHI-JENE CHENPETER GOFFMEGAN ERMLERSupported by NIH, PATH, GSK and BMGF